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POSITIVITY OF THE WEIGHTS 
OF EXTENDED CLENSHAW-CURTIS QUADRATURE RULES 

TAKEMITSU HASEGAWA, HIROSI SUGIURA, AND TATSUO TORII 

ABSTRACT. We prove that some extended Clenshaw-Curtis quadrature rules 
have all weights positive. We also present extended Filippi rules of open type 
having all weights positive. Conjectures on the possibility of other positive 
quadrature rules embedded in Clenshaw-Curtis or Filippi rule are suggested. 

1. INTRODUCTION 

In this paper we shall establish that some integration rules embedded in the 
Clenshaw-Curtis rule [4] (henceforth abbreviated to CC rule) proposed in [16] 
have all their weights positive. This is important to guarantee the numerical 
stability and convergence of the quadrature rules [9, p. 189], [14, p. 335]. For 
additional literature on positive quadrature rules, we refer to [1, 3, 5, 7, 11, 12, 
20, 21, 22]. 

The CC rule is an interpolatory integration rule which approximates the in- 
tegral Q(f) =I f(x) dx by 

N 

(1.) QN(f) = LN(f; x)dx = E WNif(XNi), 
i=O 

where LN(f; x) denotes the unique polynomial of degree less than or equal to 
N interpolating a given smooth function f(x) at N + 1 points XNi: 

(1.2) LN(f; XNi) = f(xN), 0 < i < N. 

The double prime in ( 1.1) denotes the summation where the first and last terms 
are halved. 

The abscissae XNi = cos(7ri/N), 0 < i < N, are the zeros of an auxiliary 
polynomial WN+1 (x) of degree N+ 1 defined by 

(1.3) ON+?(X) = TN+1(x)- TN I (x) = 2(x- ) UN1(X). 

In (1.3), Tk(x) and Uk(x) denote the Chebyshev polynomials of the first and 
second kinds, respectively, and are given by Tk (x) = cos kO and Uk (x) = 
sin(k + 1)0/ sin 0 (x = cos 0) . If the function f (x) is sufficiently smooth, the 
approximation QN(f) (1.1) converges rapidly as N increases. 
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From (1.2) and (1.3) we have the Lagrange form for LN(f; x), 

N 

(1.4) LN(f ;x) =ZE lNi(X)f(XNj), 

i=O 

where Nij(x) is the polynomial 

(1.5) lNi(X) e x N+1 x) = N Tk(XNi) Tk(x), 0 < i < N, (X -XNi)W%'+l(XNi) N= 

ei = 1 (1 < i < N), eO = eN = 2, and w'+1(x) denotes the derivative of 
WN+ (x) . For the derivation of the second equality above, see [4, 16]. 

Imhof [18] proved that the weights WNi = fll 'Ni (x) dx in (1.1) are all 
positive. Furthermore, it is well known that the sequence { QN(f) } of the 
quadrature rules can be generated recursively by doubling N and efficiently by 
using the Fast Fourier Transform (FFT) [2, 13, 24]. In [16] we showed that 
it is possible to increase N more slowly than doubling, thereby enhancing the 
economy of an automatic quadrature [6, p. 418] without sacrificing the accuracy. 
To be specific, the sequence of N is 

(1.6) N= 6,8, 10, ... , 3 x 2', 4 x 2' , 5 x 2', ... , n = 1 , 2 , ... . 

and the abscissae for QN(f) are chosen so that the sequence { QN(f) } is an 
embedded sequence [23], i.e., all points used in a rule of degree N are included 
in the set of points for the succeeding rules of degree greater than N. 

We now consider a family of generalized sequences including (1.6). From 
now on let N be an even integer of the form N = 2nK (n = 1, 2, .. . ), where 
K E N, the set of positive integers, unless otherwise stated. Then, our sequences 
consist of 3N, 4N, 5N, that is, 

6K, 8K, IOK, ...,5 3 x2nK, 4x2nK, 5x2nK, . .., n =1, 2, ...,5 K E N, 

where the case K = 1 , in particular, coincides with the sequence (1.6). Conse- 
quently, the sequences of quadrature rules are of the form { Q3N, Q4N, Q5N }1, 

or equivalently { Q4N, Q5N, Q3X2N } 

For integers m = 1, 2, define polynomials QnMN(X) of degree mN by 

(1.7) QmN(x) = TmN(X)-cos{(2 + 1)m7r/8}, m = 1, 2. 

Let Q4N(f) X Q(4+m)N(f) (m = 1, 2) denote extended CC rules whose abscissae 
are zeros of W-)4N+1 (x) and of W-)4N+1 (x) QMN(X) , respectively. Then, Q4N(f) 

is a CC rule, and for Q(4+m)N(f) we will prove in ?2 the following theorem. 

Theorem 1.1. For integers m = 1, 2, let tmN,j, 0 < j < mN - 1, be the zeros 
of Q +(X) (1.7), that is, 

(1.8) tmN, j = cos{27((j + 3m/16)/(mN)}, 0 < j < mN - 1. 

Then, the weights w(m) and UmN, j of the extended CC rules Q(4+m)N(f) of 

degree (4 + m)N, m = 1, 2, of closed type, given by 

4N mN-I 

(1.9) Q(4+m)N(f) = jW 
m 

i f(X4N,i) + E UmN, j f(tmN,j), m= 1, 2, 

i=O 1=o 

IIn the first draft we assumed that N is a power of 2, but the referee suggested to us that N 
is allowed to take every even positive integer in proving Theorems 1.1 and 1.2 below. 
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are all positive, where X4N,i = cos{7ri/(4N)}, 0 < i < 4N, are the zeros of 
W04N+1 (X) defined by (1.3). For the case m = 2, the integer N can be allowed 
to be any positive integer, even or not. 

For the expressions of w(m4) and UmN, j, see (2.2) and (2.3), respectively. 

Remark. Theorem 1.1 holds only under the assumption that mN (m = 1, 2) 
are even; it does not hold when mN (m = 1, 2) are odd. 

The rule Q5N(f) of degree 5N is embedded in Q6N (f), which is also an 
embedded rule in the CC rule Q8N(f) based on the zeros of W8N+ I(x). This 
is easily seen from the relations (see Lemma 4.1 and (2.4) in [15]): 

(1.10) 0W8N+1 (X) = 2 4N+ 1(x) T4N(x), 

( 1. 1 1 ) T4N(x) = 2 Q2N (x) Q2N (x), 

( 1. 1 2) Q2N (x) = 2 QN (x) { TN(x) + cos 3n/8}1. 

Omitting the endpoints x = 1 and x = -1 in the N+ 1 abscissae of the CC 
rule, namely using the zeros of UN- I(x) as the abscissae, Filippi [ 10] proposed 
a quadrature rule of open type, having all positive weights. Let Q4N-2(f) and 
Q(4+m)N-2(f), m = 1, 2, denote extended Filippi rules of open type whose 
abscissae are the zeros of U4N1 (x) and those of U4N1 (x))QrnN(X), respec- ~~~~~~~~~~~ 
tively. Then Q4N-2(f) is the Filippi rule and in ?3 we will prove the following 
theorem. 

Theorem 1.2. For integers m = 1, 2 let TmN,j, 0 < j < mN - 1, denote the 
zeros of Q-N(x) (1.7), that is, 

( 1. 13) TmN,j = cos{27r(j + m/16)/(mN)}. 

Then, the weights v4Ni and I/mN, of the extended Filippi rules Q(4+m)N-2(f) 

of degree (4 + m)N - 2 of open type, given by 

4N-1 

Q(4+m)N-2(f) = 
m 

if (X4N, i) 
(1.14) ~~~~~~~i=1 

mN-I 
+ E ?lmN, j f(TmN,j), m= 1, 2, 

j=O 

are all positive, where X4N, i (1 < i < 4N - 1) are the same as those used in 
(1.9) except for X4N,O (= 1) and X4N,4N (= -1). For the case m = 2, the 
integer N can be allowed to be any positive integer. 

Remark. Theorem 1.2 holds only under the assumption that mN (m = 1, 2) 
are even; it does not hold when mN (m = 1, 2) are odd. 

If we note (1.3), (1.10), (1.11), and the relation 

(1.15) Q2N(x) = 2QN(x){TN(x) +cos7r/8}, 2N N 

we can see that Q5N-2(f) is an embedded rule in Q6N-2(f), which is also 
embedded in Q8N-2 (f) based on the 8N - 1 abscissae, the zeros of U8N 1(X). 
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In ?4 we conclude by suggesting a conjecture on the possibility of some other 
rules having positive weights. 

2. PROOF OF THEOREM 1. 1 

Let L(4+m)N(f; x) (m = 1, 2) denote the unique polynomial of degree less 
than or equal to (4 + m)N that coincides with f at the 4N + 1 points X4N, i, 
O< i<4N, and mN points tmN,j, 0 < j< mN- 1,in(1.8). Thenwehave 
the Lagrange interpolation formula for L(4+m)N(f; x): 

4N, QrnN(X) 
L(4+m)N(f; x) = E 14N,i(X) f(X4N, i) 

i=O MrN (X4N, i) 
(2.1) + mN-1 QMN(X) 

=O (- tmN, j) Q+' (tmN, j) 

W4N+1 (X) f(tmN, ) m = 1, 2, 
W)4N+ 1 (tmN, j) 

where 14N,i(X) is given by (1.5). Integrating L(4+m)N(f; X) on the range 
[-1, 1] yields the integration rule Q(4+m)N( f )= f1 L(4+m)N(f; x) dx in (1.9), 

where the weights w (mn) and UmN, j are given by 
4N,i 

(2.2) W4N = 14N i(X) (x m dx, < i < 4N, 

(2.3) 
UmN, (x Q+tN(X) 

wQ++(x) dx, (2.xtmN,j)QmN(tmN, j) WJ4N+1 (tmN, j) 

0<j<mN-l, m=1,2. 

2.1. Positivity of w(in) First, we prove that the weights w( m) 0 < i < 4N, 4N, i * 4N,i 
in (1.9) and given by (2.2) are all positive for the case m = 1 . 

Lemma 2.1. Let 14N,i(X) and QN(x) be the polynomials defined by (1.5) and 

(1.7), respectively. Then we have 

4N 

4N 14N, i(x) QN(X) = 2 Q (X4N, i) Tk (X4N, i) Tk (x) 

k=O 

(2.4) Nf 

(2)+ T3N+k (X4N, i) {T4N+k (X) - T4N-k (X)}, 
k=O 

0 < i < 4N, 

where X4N, i are the zeros of W-)4N+1 (X) ( 1.3). 

Proof. Using the relation 

(2.5) 2Tk(x) Tn(x) = Tk+n (x) + TlknI(x), k, n > 0 
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from (1.5) and (1.7) we have 

4N 14N, i (X) QN (X) 
4N 

= 2 E Tk (X4N, i) Tk(x) { TN(x) - cos 37r/8} 
k=O 

4N 

= Z Tk (X4N, i) {TN+k(X) + TIN-kl(X)-2 cos(37r/8) Tk(x) } 
(2.6) k=O 

4N 

= Z { TN+k (X4N, i) + TIN-kl (X4N, i)-2 cos(3n/8) Tk (X4N, i)}Tk(x) 
k=O 

N 

+ Z { T3N+k (X4N, i) T4N+k(X) -T4N+k (X4N, i) T3N+k (X)} 

k=O 

If we again use (2.5) on the far right of (2.6) and note that 

(2.7) T8N-k(X4N,i) = Tk(X4N,i), O < k < 8N 
it is easy to verify (2.4). El 

Substituting (2.4) into (2.2) yields the expression for the weights W4NE 4N,i 

4N N 

(2.8) 4Nw4N, = 2 Tk(X4N, i) 8u(k) + E T+N)(k) 
k=O k=oO N (XNNk)i 

where /u(k) and qN(k) are defined by 
f1 T2/(1-k2) if k=even, 

(2.9) ,u(k) I Tk(x) dx 0 if k = odd, 

(2.10) kN(k) = (4N + k) - (4N - k), k > O. 

For real x > 2, let ,u(x) be defined by 

(2.11) ,u(x) = 2/(1 -x2), x > 2, 

instead of (2.9) and let qN(X) be defined by (2.10) with ,u(x) given by (2.11). 
Then ,u(x) is negative and monotone increasing for x > 2 and kN(X) is also a 
monotone increasing function of x when 0 < x < N. We will take advantage 
of these properties in proving the positivity of weights of our extended CC rules. 

Lemma 2.2. Let X4N, i, O < i < 4N, be the zeros of w4N+I (X) (1.3) and QN(x) 
be defined by (1.7). Then we have 

12 Q+(X4N, i)} = TN(X4N, i) + 2 cos(3nz/8) T2N(X4N, i) 

(2.12) + (1 + 2 cos 3nj14) T3N(X4N, i) 

(2.12) + 2 cos(3nt/4) cos(3nz/8) T4N(X4N,i), 

0 < i < 4N. 

Proof. From (1.1 1) and (1.12) and the relation {T4N(X4N, i)}2 = 1 for 0 < i < 
4N, it follows that 

(2.13) 1 /Q+N(X4N, i) = 4 { TN(X4N,i) + cos 37r/8} Q2N(X4N,i) T4N(X4N, i) 
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In (2.13), using (2.5), (2.7) and the relation Q2N(x) = T2N(X) + cos(3 7/4) (see 
(1.7)) establishes (2.12). 51 

Theorem 2.3. Let w() i0 < i < 4N, denote the weights given by (1.9) and 

Iu(k) and q$N(k) be defined by (2.9) and (2.10), respectively. Define ANI(k), 
0 <1 < 3, by 

(2.14) ANo(k) = 2,(k) + (1 + 2 cos 
37r/4)q$N(k) 

+ 4 cos(3nz/4) cos(3njl8) bN(N - k), 

(2.15) AN1 (k) = 
2,u(N + k) + 2 

cos(3nj/8) qN(k) 
( * ) ~~~~~+ (I1 + 2 cos 37z/4) ON(N - k), 

(2.16) AN2(k) = 2,u(2N + k) + qN(k) + 2 cos(37r/8)q$N(N-k), 

(2.17) AN3(k)= 2u(3N + k)+ q$(N-k), 0 < k < N. 

Then we have 

(1) 
N 3 

(2.18) W4N, i= iN 1 ANI(k) TIN+k(x4N,i), 0 < i < 4N 
k=O 1=0 

and ANI(k), 0 < 1 < 3, are all negative except for ANO(0). 

Proof. Using (2.5), (2.7) and (2.12) in (2.8) establishes (2.18). We make use of 
the fact that Iu(k) < 0 for k > 0 and qN(k) > 0 (0 < k < N) to show that 
AN1(k) (O < 1 < 3, 0 < k < N) are negative except for ANO(0). Noting that 
the coefficients of qN(k) and N(N - k) in (2.14) are both negative, we can 
see that ANo(k) < 0 (0 < k < N). It can be easily seen from (2.10) and (2.17) 
that AN3(k) = u(3N + k) + u(5N - k) < 0 (O < k < N). If we note in (2.15) 
that ,u(N + k) - cos(3nz/8) ,u(4N - k) is negative for 0 < k < N, we can see 
that ANl(k) < 0 (0 < k < N). To verify that AN2(k) < 0, it suffices to use in 
(2.16) the definitions (2.9) and (2.10) and the relation 

2 ,u(2N + k) - 2 cos(3nz/8) ,u(3N + k) - /u(4N - k) 

< {2 - 2 cos(37r/8) - 1},u(3N) < 0, 0<k<N. EU 

Noting that Tl(X4N,i) < 1, 1 < i < 4N - 1, and Tl(X4N,O) = 1, we have 
from Theorem 2.3 that 

N 3 

4 NW > ANI (k) 
k=O 1=0 

4N 373 N 

=2 E/ /l(k) + 4 (l + cos 4 I( + cos 8 E ON(k) > ?0' 
k=O k= 

where, in the last inequality above, we have used the relation 
4N 

(2.19) E L(k) = 4N/{(4N)2 - lI > 0. 
k=O 

Thus, w4y i0 ? < i < 4N, have been verified to be all positive. Verification 4N,i 

of the positivity of w(2) (0 < i < 4N) can be accomplished similarly, in fact 
more easily, but we omit the details. 
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2.2. Positivity of UmN, Nj. We begin by proving that the weights UmN,j, 0 < 

j < N- 1 in (1.9) and given by (2.3) are all positive when m = 1. It is similar 
and more easy to prove the positivity of U2N, j, 0 < j < 2N - 1, but we omit 
the details. 

Lemma 2.4. Let QN(x) be the polynomial defined by (1.7) and tNj, 0 <? < 
N- 1, be the zeros of QN(x), given by (1.8). Then we have 

_ _ _ _ 
N , 

(2.20) N 
(X)=- 2 Z TN-k(tNI) Uk-I(X), (2.20) 

~~~X - tNj k=O 

where we define U_ 1 (x) = 0. 

Proof. From the assumption, it follows that 

(2.21) QN(X) 
- 

QNQ(X)-QN(tNj) TN(X)-TN(tNj) 

X-tNj X-tNj X-tNj 

Elliott [8] gives the identity 
n 

(2.22) Tn(x) - Tn(y) = 2 (x - Y) j," Tn -k (Y) Uk -I(X) X n > O. 

k=O 

Using (2.22) in (2.21) establishes (2.20). o 

Lemma 2.5. For the weights uNj, 0 < j < N, given by (1.9) and (2.3), we have 

N 

N sin(3n/8) UNj = Z TN-k(tNj) q$N(k) 

(2.23) 
k=O 

-= cos(2k XNj) qN(N - 2k), 
k=O 

where q$N(k) is given by (2.10) and XNj is defined by 

(2.24) tNj = COs NjN, cNjI= 2 7(j + 3/16)/N, 0 < j < N- 1. 

Proof. From (1.3) and the definition of Uk(x) it follows that 

(2.25) W4N+I (X) Uk-I (X) = T4N+k(X) -Tl4N-kl(X). 

From (1.8), (2.25) and the relation 

(2.26) QN4(x) = N UN-l (x) 

we have 

QN (tNj)W)4N+I(tNj) = N{T5N(tNj)- T3N(tNj)} 

(2.27) 3oz 3oz3o 
(2.27)~~~~~ -2 N sin 327 sin 

3 
=t 2 N sin 

3 
.t 

Using (2.20), (2.25) and (2.27) in (2.3) and noting (2.9) and (2.10) establishes 
(2.23). o 

The Poisson Summation formula [17, p. 270], [19] is helpful in proving that 
UNj >O when 0 < j < N. 
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Lemma 2.6 (Poisson summation formula). Let yI(x) be an integrable function 
defined on the real positive line and TP(w) be the Fourier cosine transform of 
V/(x), 

(2.28) T(w) = J y(x) cos wx dx. 

Then for any positive 4 and real x we have the formula 

(2.29) E{'T(k 4 + x) + T(k4 - x)} = 2E (27rk) cos (2 x) 
k=Ok= 

where the prime denotes the summation whose first term is halved. 

Define ,v(x) by 

(2.30) ,v(x) = N(N - 2x) = 2/{ 1 - (5N - 2x)2} - 2/{ 1 - (3N + 2x)2} 

for 0 < x < N/2, and by yI(x) = 0 otherwise. Then, making use of the 
formula (2.29) in (2.23), we have 

N/2 00 

Nsin(37r/8) UNj = E cos(2kINj) yi(k) = E cos(2k Nj) yi(k) 
k=O k=O 

(2.31) 0.0 

= E {D(27rk + 2 XNj) + D(27rk -2 XNj) 
k=O 

0<j<N- 1, 

where 1(Dw)) is given by 
{N12 

(2.32) (D 1) ON J N(N- 2 x) cos ox dx. 

In order to prove that UNj > 0 in (2.31), it suffices to show that <D(>() > 0 
for any real w. From (2.30), bN(X) is found to be an odd function and can 
be expanded as follows: 

ON(X) = 2/{1 - (4 N + X)2} - 2/{1 - (4N - X)2} 

(2.33) = 2x/{(4 N- 1)2 X2} - 2x/{(4N + 1)2 _ X2} 

= 2 E clx', 0 < x < N, 
1=1 

where cl for odd 1 is defined by 

(2.34) cl = (4N- 1)-l- -(4N+ 1)- > 0, 

and cl vanishes when 1 is an even integer. Substituting the expansion (2.33) 
into the right-hand side of (2.32) gives 

00 

(2.35) 1(D(w) = 2 E cl Eyl(wO), 
1=1 

where 91(w_)) is defined by 
(N12 

(2.36) E),(oi)) =/ (N -2 x)l cos -x dx, I > I. 
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It remains to show that FJ1(w) is positive, since then (D(w) is positive by (2.34) 
and (2.35). 

To this end, we define p(x) = N- 21xl when ixi < N/2, and p(x) = 0 
otherwise. Then 01(cw) (2.36) can be rewritten as 

0r0 

91(w))= ] {p(x)}leiwxdx 

(2.37) -00 

=7 1-1 >*91* ** (w), 1?1, 

where g * h(w) denotes convolution defined by 

g*h() = g( - t) h(t) dt. 

Since 01(w) = 2{1-cos(wN/2)}/w2 > 0, it follows from (2.37) that 0 e(w) > 0 
for 1 > 2. 

3. PROOF OF THEOREM 1.2 

Let hNi(x) be defined by 

(3.1) hNi(X) = UN- I (X) I < i < N_ - I 

where XNi, 1 < i < N - 1, are the zeros of UN-1 (x) (= 2 w-N+1 (x)/(X2 - 1)) . 

Then for the weights vm) and 1mN j of the quadrature rules Q(4+m)N-2(f) 

(1.14), we have, similarly to (2.2) and (2.3), 

(3.2) V (m) = h4N,i(X)Q N(X) dx, 1 < i < 4N- 1, 

(33) l74N, i jNU4N4NZmNi 

( 

1 

- QnMN(X) 

U4N-1 (X) d 
(3.3) J' 1 (TTmN,j) QT/(TmN, j) U4N-I(TmN, j) 

O<j<mN-1, m=1,2. 

We remark that by using hNi(X) (3.1), the Filippi rule [10] QN-2(f) based on 
the points XNi, 1 < i < N- 1, can be written as 

N-1 1 
(3.4) QN-2(f) = Z hNi(x) dx f(XNi)- 

3.1. Positivity of vt )n. Here we prove that v (1), 1 < i < 4N - 1 (3.2), are 

all positive. The positivity of v 1 < i < 4N - 1, is more easily verified, 4N,' 
but we omit the details. 

Filippi (see [1O, equation (11)]) shows that h4N,i(x) in (3.1) and (3.4) can 
be expressed as follows: 

4N-2 

4N h4N, i (x) = 2(1 - X4N, i) Uk (X4N, i) Uk (x) 

(3.5) 4N-1k=O 

= Z {Tk-l(X4N,i)-Tk+1(X4N,i)} Uk-l(X) 
k=l 
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Using (2.7) and the relation 

(3.6) Uk (x) - Uk-2 (x) = 2 Tk (x), 

where we define U-k(x) = -Uk-2(x), and TJk(X) = Tk(x) for k > 0, we 
have from (3.5) 

4N 

(3.7) 4Nh4N,i(X) = 2 z Tk(X4N,i)Tk(X)-T4N-I(X4N,i) U4N_I(X) 
k=O 

- T4N(X4N, i) { U4N(X) + U4N-2(x)}/2. 

Further, similarly as in the proof of Lemma 2.1, we have 
4N 

2QN(X) 
- 

Tk (X4N, i)Tk(X) 
k=O 

4N 

()= 2QN(X4N, i) S Tk (X4N, i) Tk (X) 
(3.8) k=ON 

N 

+ 5 T3N+k (X4N, i) {T4N+k (X) -T4N-k (X)}, 
k=O 

1 < i<4N- 1. 

Lemma 3.1. For the weights v( ) given by (3.2) of the quadrature rule (1.14), 
we have 

4N N 

4N v4N,i = 2 / 
Tk(X4N,L i) T+(k) + 

(X4N, i- 
j N(k) 

(3.9) k=O k=O Q(xN) 

T4N(X4N,i) 
QN(X4N, i) 

where ,u(k) and qN(k) are defined by (2.9) and (2.10), respectively. In (3.9), 
BN is a constant defined by 

(3.10) BN = {v(5N) + v(3N) - 2 cos(7r/8) v(4N)}/2, 

and v(n) is defined by 

v(n) = 1 f {Un(x) + Un-2(x)} dx 
2 11 

(3.1 1) -l I1/(n+1)+1/(n-1) ifn=even, 

O if n = odd. 

Proof. Using (1.7), (3.7) and (3.8) in (3.2) and noting that f1 Uk(x)dx = 0 
for k odd, and 

(3.12) 2 Tl(x) Um(X) = Ul+m(X) + Um-i(X), 

we can easily verify (3.9). El 

We remark that BN in (3.10) is positive. The following lemma is established 
along the lines of the proof of Lemma 2.2. 
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Lemma 3.2. Let X4N, i, 1 < i < 4N - 1, be the zeros of U4N-1 (x) and QN(x) 
be defined by (1.7). Then we have 

{2QN (X4N,i)} = TN (X4N,i) + 2 cos(7r/8) T2N (X4N, i) 

(3.13) + (1 + 2 cos7r/4) T3N(x4N,i) 
(3.13) +2 cos(7r/4) cos(7r/8) T4N(x4N,i), 

1< i<4N- 1. 

Theorem 3.3. Let v(1) 1 < i < 4N - 1, denote the weights in (1.14) and 
,u(k), qN(k) and the constant BN be defined by (2.9), (2.10), and (3.10), re- 
spectively. Let AN,(k), 0 < / < 3, denote the constants given by (2.14)-(2.17) 
with cos 37r/4 and cos 37r/8 replaced by cos7r/4 and cos7 r/8, respectively. 
Then we have 

IN 3 

4Ni= AN(k) TlN+k(X4N,i) 
(3.14) k=O 1=0 

I T4NX(4N,j) BN 0 < i < 4N, 
4N Q (X4N, i) 

and AN1(k), 0 < 1 < 3, are all negative except for ANO(0). 

Proof. Verification of (3.14) is accomplished along the lines of the proof of 
Theorem 2.3. We have already verified in the proof of Theorem 2.3 that 
AN3(k) < 0. We make use of the fact that ,(k) and qN(k) vanish when 
k is odd and are monotone increasing functions for even integers k satisfying 
2 < k < N to show that 

ANo(k) = 2 ,u(k) + (1 + 2 cos 7r/4) qN(k) + 4 cos(7r/4) cos(7r/8) qN(N - k) 
< 2,u(N) + ccbN(N) 
= 2,(N) - cM(3N) + cM(5N), 2 < k < N 

where we put c = 1+ 2 cos(7r/4) (1 + 2 cos r/8) = 5.027.... It is easy to verify 
that 2 ,(N) - c ,(3N) < 0 for N > 2. Thus, it is seen that ANo(k) < 0 for 
2 < k < N because ,u(k) < 0 for k > 2. Similarly, we have 

ANI (k) = 2 (N + k) + 2 cos(7r/8) qN(k) + (1 + 2 cos7r/4) qN(N - k) 
< 2,u(2N) + b N(N) < 0, 0 < k < N, 

where we have put b = 1 + 2 (cos7r/4 + cos7r/8) = 4.261 .. . 
Next, we show that AN2(k) < 0 for 0 < k < N. We can write AN2(k) in 

the form 

AN2(k) = 2 ,(2N + k) + 2 cos(7r/8) kN(N - k) + qN(k) 
(3.15) = 2 {,(2N + k) - cos(7r/8) j(3N + k)} + j(4N + k) 

+ {2 cos(7r/8) j(5N - k) - j(4N - k)}. 

It is trivial that the first and second terms on the far right of (3.15) are negative. 
Close inspection reveals that the third term is also negative. Thus we have that 
AN2(k) < ?- E 
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Noting that T,(X4N,i) < 1, 1 < < 4N- 1,and T,(X4N,o) = 1,from (3.13) 
and Theorem 3.3 we have 

(3.16) 
N 3 

4NV(N i > AN1(k) -4BN I1 +CO4 cos CO8 
k=0 1=0 

4N N 

=2 (k) + 4 (1 + cos4) (1c +OS){EZ ON(k)-BN} 
k=0 k=0 

Using the relation (2.19), that is, 

4N 

2 Jp ,(k) = v(4N), 
k=0 

and 

N 

(3.17) 2 1 "bN(k) = v(3N) + v(5N) - 2v(4N), 
k=0 

we have from (3.10) and (3.16) 

(3.18) 

4Nv4N > v(4N)+4 (1+cos 4)(1? + S)(COS_I- 1)v(4N)=0. 

Thus, the weights v(l 1 < i < 4N - 1, are all positive. El 

3.2. Positivity of 7lmN,j. We prove that the weights ?1Nj, 0 < j < N - 1, 
in (1.14) are all positive. It is similar and more easy to verify the positivity of 
?72N,j (0 < j < 2N - 1), but we omit details. 

Lemma 3.4. Let QN(x) be the polynomial defined by (1.7) and TNj, < j < 

N - 1, be the zeros of QN(x) given by (1.13). Then we have 

(3.19) QN(X) -2 X UN-I-k( rNj) Tk(X) X- TNj k=0 

Proof. Identity (3.19) is established along the lines of the proof of Lem- 
ma 2.4. El 

Lemma 3.5. For the weights ?7Nj in (1.14) and (3.3), we have 

N 

(3.20) Nsin(7r/8) 71Nj = BN - Z TN-k(TNj) ON(k), 0 < j < N - 1, 
k=O 

where BN is given by (3.10). 
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Proof. Using (3.12) and (3.19), we have 

2(2j- 1) U4N- I(x) QN (X) 

N 

= Z { TN+1-k(TNj) -TN-l-k (TNj)} {U4N+k-1 (x) + U4N-k-l (x)} 
k=O 

(3.21) N-i 

= TN-k(TNj) {U4N+k(x) + U4N-k-2(X)} 
k=- 1 

N+1 

-EZ TN-k(TNi) {U4N-k(X) + U4N+k-2(X)}- 
k=l 

On the other hand, using (1.13), (2.25) and (2.26), we have 

(3.22) 22(TNj - 1) U4N-l (TNj) Q '(TNj) = NW4N+I (TNj) UN-I (TNj) 

= NI{T5N(TNj) -T3N(TNj)} = -2 N sin(r/8). 
Substituting (3.21) and (3.22) into (3.3) and using (3.6) yields (3.20). El 

From (3.10), (3.17) and (3.20) and the fact that the qN(k) are positive, we 
have 

N 

N sin(7/8) iNj ? BN - kN(k) 
k=O 

=2 {1 - cos(7/8)} v(4N) > 0, 0 < j < i - 1. 

Thus, the weights 7Nj], 0 < j < N - 1, are all positive. El 

4. CONJECTURE ON THE POSSIBILITY OF OTHER POSITIVE QUADRATURE RULES 

Before we give some conjectures on the possibility of other extended CC 
rules having all positive weights, we briefly review the sequence of uniform 
distribution on (0, 1) [15, 16]. 

Let any positive integer / be written in radix-2 notation as 

(4.1) 1=lm'm-l ** 12'1 =/11 +122 + 2 ?+Im *2m , 

where m = [log2]? + 1, 1i = 0 or 1 (1 < i < m - 1), and always Im = 1. 
Define fractions /,l and a, by 
(4.2) 3il = 11 *2-1 + 12 * 2-2 +*.. + /m_ *.2-m+l + lm .2-m + 1 .2-m-1 

and a, = /3l - 2-m. Then /,1 (and al) can be seen to satisfy the recurrence 
relations 

(4.3) /32 = /3,/2, /321+1 = /32l + 1/2, 1> 1, 

with the starting value /3i = 3/4 (and a, = 1/4). 
The sequence {,BI - 2-1m } is the so-called Van der Corput sequence [1 5], 

which is uniformly distributed on (0,1), so that the sequence {/I3} and {fl} 
are also uniformly distributed on (0, 1). 

Defining /3-I = 0 and fib = 1/2, we use two sets, {cos2r/3i} (-1 < i < 1) 
and {cos27rci} (1 < i < 1), as the sample points for interpolatory integration 
rules of closed type and open type, respectively. 
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Lemma 4.1. Let N be a power of 2, N = 2n, and put Xk = cos 27uzk (or 
cos 27r11k) . Then for a positive integer / we have 

N-1 
2N-1 J7J (X-Xk) = UN-1(X), fN-i = 1AN/2, 

k=i 
N-1 

2N-1 J7 (X- XN+k) = TN(X) - Xl, AN-1 = 1 -fIN/2- 
k=O 

Corollary. For N = 2n, n = 1, 2, . we have 
N-1 

2N JJ (X-cos27rfJk) = TN+1(x) - TN-l(x) = WON+I(X). 

k=- 1 

Remark. Lemma 4.1 and its Corollary indicate that the set of the first 2n + 1 
(2n - 1) sample points {cos27rf,l}, -1 < / < 2n _ 1 ({cos27rall, 1 < / < 
2n - 1), coincides with that used in the CC rule (Filippi rule). 

Numerical tests suggest the following conjectures. 

Conjecture 1. Let the integers N and M be powers of 2 such that N = 2n and 
M = 2m, where 1 < m < n - 1 for n > 2. Then the interpolatory integration 
rules of degree N+M of closed type based on the set of sample points {cos 27r/,B}, 
- 1 < 1 < N + M - 1, have all positive weights. 

We note [15, 16] that the set of the first N+M+ 1 sample points {cos 2rf,l}, 
- 1 < 1 < N + M - 1, coincides with the zeros of the polynomial 

{TN+1(x) - TN-1 (x)} {TM(x) -cos 3rM/(2N)}. 

In ?2 we have verified special cases of Conjecture 1, namely the cases M = N/2 
and M= N/4. 

Conjecture 2. Let the integers N and M be powers of 2 such that N = 2n and 
M = 2m, where 1 < m < n - 2 for n > 3. Then the interpolatory integration 
rules of degree N-M of closed type based on the set of sample points {cos 27r/?1I}, 
- 1 < 1 < N - M - 1, have all positive weights. 

Remark. The set of sample points {cos 27r/,}, - 1 < 1 < N - M - 1 , coincides 
with the zeros of the polynomial 

{TN+1(x) - TN- (x)}{TM(x) - cos7tM/N}. 

Conjecture 3. Under the same assumption as in Conjecture 1, the interpolatory 
integration rules of degree N + M - 2 of open type based on the set of sample 
points {cos 27rz01}, 1 < 1 < N + M - 1, have all positive weights. 

Remark. The set of sample points {cos 27zra}, 1 < 1 < N + M - 1, coincides 
with the zeros of the polynomial 

UNi I (x) {TM(x) - cos7rM/(2N)}. 

In ?3 we have verified special cases of Conjecture 3, namely the cases M = N/2 
and M= N/4. 

Some numerical experiments disprove a conjecture on the open-type quadra- 
ture analogous to Conjecture 2 for closed-type rules. Specifically, the set of 
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sample points {cos27ral}, 1 < I < 2n _2m - 1, where 1 < m < n - 2, may 
yield no positive quadrature rule of open type. 

ACKNOWLEDGMENTS 

We are grateful to the referee for valuable comments. We also would like to 
thank Professor Walter Gautschi for his detailed suggestions for improving the 
presentation. 

BIBLIOGRAPHY 

1. R. Askey, Positivity of the Cotes numbers for some Jacobi abscissae II, J. Inst. Math. Appl. 
24 (1979), 95-98. 

2. M. Branders and R. Piessens, An extension of Clenshaw-Curtis quadrature, J. Comput. 
Appl. Math. 1 (1975), 55-65. 

3. H. Brass, Eine Fehlerabschdtzungfiur positive Quadraturformeln, Numer. Math. 47 (1985), 
395-399. 

4. C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic 
computer, Numer. Math. 2 (1960), 197-205. 

5. G. Criscuolo, G. Mastroianni, and D. Occorsio, Convergence of extended Lagrange interpo- 
lation, Math. Comp. 55 (1990), 197-212. 

6. P. J. Davis and P. Rabinowitz, Methods of numerical integration, 2nd ed., Academic Press, 
Orlando, 1984. 

7. S. Elhay and J. Kautsky, Algorithm 655-IQPACK: FORTRAN subroutines for the weights of 
interpolatory quadratures, ACM Trans. Math. Software 13 (1989), 399-415. 

8. D. Elliott, Truncation errors in two Chebyshev series approximations, Math. Comp. 19 
(1965), 234-248. 

9. H. Engels, Numerical quadrature and cubature, Academic Press, London, 1980. 

10. S. Filippi, Angendherte Tschebyscheff-Approximation einer Stammfunktion-eine Modifika- 
tion des Verfahrens von Clenshaw und Curtis, Numer. Math. 6 (1964), 320-328. 

11. W. Gautschi and S. E. Notaris, Gauss-Kronrod quadrature formulae for weight functions of 
Bernstein-Szego type, J. Comput. Appl. Math. 25 (1989), 199-224. 

12. W. Gautschi and T. Rivlin, A family of Gauss-Kronrod quadrature formulae, Math. Comp. 
51 (1988), 749-754. 

13. W. M. Gentleman, Implementing Clenshaw-Curtis quadrature II. Computing the cosine 
transformation, Comm. ACM 15 (1972), 343-346. 

14. G. Hammerlin and K. H. Hoffmann, Numerische Mathematik, Springer-Verlag, Berlin, 
Heidelberg, 1989. 

15. T. Hasegawa, T. Torii, and I. Ninomiya, Generalized Chebyshev interpolation and its appli- 
cation to automatic quadrature, Math. Comp. 41 (1983), 537-553. 

16. T. Hasegawa, T. Torii, and H. Sugiura, An algorithm based on the FFTfor a generalized 
Chebyshev interpolation, Math. Comp. 54 (1990), 195-210. 

17. P. Henrici, Applied and computational complex analysis, Vol.2, Wiley, New York, 1977. 

18. J. P. Imhof, On the method for numerical integration of Clenshaw and Curtis, Numer. Math. 
5 (1963), 138-141. 

19. J. N. Lyness, The calculation of Fourier coefficients by the Mobius inversion of the Poisson 
summation formula. Part I. Functions whose early derivatives are continuous, Math. Comp. 
24 (1970), 101-135. 

20. G. Monegato, Positivity of the weights of extended Gauss-Legendre quadrature rules, Math. 
Comp. 32 (1978), 243-245. 

21. T. N. L. Patterson, An algorithm for generating interpolatory quadrature rules of the highest 
degree of precision with preassigned nodes for general weight functions, ACM Trans. Math. 
Software 15 (1989), 123-136. 



734 TAKEMITSU HASEGAWA, HIROSI SUGIURA, AND TATSUO TORII 

22. F. Peherstorfer, Linear combination of orthogonal polynomials generating positive quadra- 
tureformulas, Math. Comp. 55 (1990), 231-241. 

23. P. Rabinowitz, J. Kautsky, S. Elhay, and J. C. Butcher, On sequences of imbedded integration 
rules, Numerical Integration: Recent Developments, Software and Applications (P. Keast 
and G. Fairweather eds.), Reidel, Dordrecht, 1987, pp. 113-139. 

24. T. Torii, Fast Fourier sine and cosine transform based on the midpoint rule, J. Inform. 
Process. 15 (1974), 670-679, in Japanese. 

DEPARTMENT OF INFORMATION SCIENCE, FACULTY OF ENGINEERING, FUKUI UNIVERSITY, 
FUKUI, 910, JAPAN 

E-mail address: hasegawa@fuis.fuis.fukui-u.ac.jp 

DEPARTMENT OF INFORMATION ENGINEERING, FACULTY OF ENGINEERING, NAGOYA UNIVER- 

SITY, NAGOYA, 464-01, JAPAN 

DEPARTMENT OF INFORMATION ENGINEERING, FACULTY OF ENGINEERING, NAGOYA UNIVER- 
SITY, NAGOYA, 464-01, JAPAN 


	Cit r328_c328: 


